Divisors of the Euler and Carmichael functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divisors of the Euler and Carmichael Functions

We study the distribution of divisors of Euler’s totient function and Carmichael’s function. In particular, we estimate how often the values of these functions have ”dense” divisors.

متن کامل

Divisors of the Euler and Carmichael functions Kevin Ford

Two of the most studied functions in the theory of numbers are Euler’s totient function φ(n) and Carmichael’s function λ(n), the first giving the order of the group (Z/nZ) of reduced residues modulo n, and the latter giving the maximum order of any element of (Z/nZ). The distribution of φ(n) and λ(n) has been investigated from a variety of perspectives. In particular, many interesting propertie...

متن کامل

Compositions with the Euler and Carmichael Functions

Let φ and λ be the Euler and Carmichael functions, respectively. In this paper, we establish lower and upper bounds for the number of positive integers n ≤ x such that φ(λ(n)) = λ(φ(n)). We also study the normal order of the function φ(λ(n))/λ(φ(n)).

متن کامل

Compositions with the Euler and Carmichael Functions

Let φ and λ be the Euler and Carmichael functions, respectively. In this paper, we establish lower and upper bounds for the number of positive integers n ≤ x such that φ(λ(n)) = λ(φ(n)). We also study the normal order of the function φ(λ(n))/λ(φ(n)).

متن کامل

Roughly Squarefree Values of the Euler and Carmichael Functions

Let φ denote the Euler function. In this paper, we estimate the number of positive integers n ≤ x with the property that if a prime p > y divides φ(n), then p2 ∤ φ(n). We also give similar estimates for the Carmichael function λ.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Arithmetica

سال: 2008

ISSN: 0065-1036,1730-6264

DOI: 10.4064/aa133-3-1