Divisors of the Euler and Carmichael functions
نویسندگان
چکیده
منابع مشابه
Divisors of the Euler and Carmichael Functions
We study the distribution of divisors of Euler’s totient function and Carmichael’s function. In particular, we estimate how often the values of these functions have ”dense” divisors.
متن کاملDivisors of the Euler and Carmichael functions Kevin Ford
Two of the most studied functions in the theory of numbers are Euler’s totient function φ(n) and Carmichael’s function λ(n), the first giving the order of the group (Z/nZ) of reduced residues modulo n, and the latter giving the maximum order of any element of (Z/nZ). The distribution of φ(n) and λ(n) has been investigated from a variety of perspectives. In particular, many interesting propertie...
متن کاملCompositions with the Euler and Carmichael Functions
Let φ and λ be the Euler and Carmichael functions, respectively. In this paper, we establish lower and upper bounds for the number of positive integers n ≤ x such that φ(λ(n)) = λ(φ(n)). We also study the normal order of the function φ(λ(n))/λ(φ(n)).
متن کاملCompositions with the Euler and Carmichael Functions
Let φ and λ be the Euler and Carmichael functions, respectively. In this paper, we establish lower and upper bounds for the number of positive integers n ≤ x such that φ(λ(n)) = λ(φ(n)). We also study the normal order of the function φ(λ(n))/λ(φ(n)).
متن کاملRoughly Squarefree Values of the Euler and Carmichael Functions
Let φ denote the Euler function. In this paper, we estimate the number of positive integers n ≤ x with the property that if a prime p > y divides φ(n), then p2 ∤ φ(n). We also give similar estimates for the Carmichael function λ.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 2008
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa133-3-1